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Moving from predictive to causal
inference



Do we care about bias?

Remember this question from 618’s 5th problem set?

• Is a biased estimate necessarily a sign of a useless model? Under
what circumstances would you care if an estimate is biased, and
under what circumstances would you not?

How did we define bias?

For regression coefficients: 𝐸[ ̂𝛽] ≠ 𝛽
More generally: 𝐸[ ̂𝜃] ≠ 𝜃

We didn’t necessarily care about bias

• As long as our models could produce predictions that satisfied
whichever inferential goal we had

• …Any examples?
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Intent of a model

Consider the following linear model from Gerber, Green and Larimer
(2008):

Turnout𝑖 = 𝛽0 + 𝛽1CivicDuty𝑖 + 𝛽2Hawthorne𝑖 + 𝛽3Self𝑖 + 𝛽4Neighbors𝑖 + 𝜖𝑖 (1)

Model 1

(Intercept) 0.297 [0.295, 0.299]
civicduty 0.018 [0.013, 0.023]
hawthorne 0.026 [0.021, 0.031]
self 0.049 [0.043, 0.054]
neighbors 0.081 [0.076, 0.086]

Num.Obs. 344084
R2 0.003
R2 Adj. 0.003
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Intent of a model

What happens if we generate fitted values for our model?

• Very poor predictive accuracy: the model can only generate 5 distinct
fitted values: 𝐸[Turnout|𝐷𝑖]

• Yet our model is very useful because the treatments were randomly
assigned: {𝑌𝑖(1), 𝑌𝑖(0)} ⟂ 𝐷𝑖

• Conversely, I can have a model riddled with biased coefficients but
with high predictive power
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Some food for thought



What can we do with this?

Cool causal inference work that can get you thinking:

Eggers and Hainmueller 2009 (RDD)

• Exploit randomness of close elections to estimate “returns to office”:
political candidates who barely won died with substantially larger
wealth than candidates who barely lost

Kalla and Broockman 2016 (RCT)

• Letters sent to congressmembers by a political organization
randomly mention/don’t mention campaign donations made by the
organization to the legislator; mentioning donations leads to more
access
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What can we do with this?

Garz and Martin 2020 (RDD)

• How do we differentiate the effect of economic conditions from the
effect of media coverage of the economy? Crossing an
unemployment “milestone” (i.e. crossing a round number) is
quasi-random and produces an exogenous change in media
coverage.

Fournaies and Hall 2018 (DiD)

• Use data data from the 99 state legislatures on legislators’ committee
assignments; assignment to legislative committees causes an
increase in campaign donations from relevant interest groups.

Acharya, Blackwell and Sen 2016 (IV)

• Cotton suitability as an instrument for % of Southern counties’
population that is black before the abolition of slavery.
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Epistemic modesty?

Causal inference is hard! We must keep in mind several
questions/elements:

• In the social sciences, treatment effects are typically small!
• Is my research question substantively interesting?
• Is it non-trivial?
• Do I have a plausible identification strategy?
• Do I have the statistical power to detect anticipated 𝜏?
• Does the treatment effect identified in my sample generalize?
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Effect size in Gerber et al. 2008

Rolling ATE as we draw random observations from the Gerber et al. sample:
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What can we NOT do?

Perhaps even more important is recognizing the limits of our methods

• In terms of isolating exogenous change
• And in terms of reliably estimating effects of fairly small magnitude

We do not want to approach this atheoretically! Given your substantive
knowledge, the estimated effect should pass the “smell test”

• John Stewart paper in Electoral Studies: the claim that John Stewart
leaving The Daily Show increased county-level vote for Trump by 1.1%
just does not sound right! (paper was retracted due to a coding error)

• Hannity vs Carlson paper: “a one standard deviation increase in
relative viewership of Hannity relative to Tucker Carlson Tonight is
associated with approximately 34 percent more COVID-19 cases on
March 14 and approximately 24 percent more COVID-19 deaths on
March 28.”

9



What can we NOT do?

Perhaps even more important is recognizing the limits of our methods

• In terms of isolating exogenous change

• And in terms of reliably estimating effects of fairly small magnitude

We do not want to approach this atheoretically! Given your substantive
knowledge, the estimated effect should pass the “smell test”

• John Stewart paper in Electoral Studies: the claim that John Stewart
leaving The Daily Show increased county-level vote for Trump by 1.1%
just does not sound right! (paper was retracted due to a coding error)

• Hannity vs Carlson paper: “a one standard deviation increase in
relative viewership of Hannity relative to Tucker Carlson Tonight is
associated with approximately 34 percent more COVID-19 cases on
March 14 and approximately 24 percent more COVID-19 deaths on
March 28.”

9



What can we NOT do?

Perhaps even more important is recognizing the limits of our methods

• In terms of isolating exogenous change
• And in terms of reliably estimating effects of fairly small magnitude

We do not want to approach this atheoretically! Given your substantive
knowledge, the estimated effect should pass the “smell test”

• John Stewart paper in Electoral Studies: the claim that John Stewart
leaving The Daily Show increased county-level vote for Trump by 1.1%
just does not sound right! (paper was retracted due to a coding error)

• Hannity vs Carlson paper: “a one standard deviation increase in
relative viewership of Hannity relative to Tucker Carlson Tonight is
associated with approximately 34 percent more COVID-19 cases on
March 14 and approximately 24 percent more COVID-19 deaths on
March 28.”

9



What can we NOT do?

Perhaps even more important is recognizing the limits of our methods

• In terms of isolating exogenous change
• And in terms of reliably estimating effects of fairly small magnitude

We do not want to approach this atheoretically! Given your substantive
knowledge, the estimated effect should pass the “smell test”

• John Stewart paper in Electoral Studies: the claim that John Stewart
leaving The Daily Show increased county-level vote for Trump by 1.1%
just does not sound right! (paper was retracted due to a coding error)

• Hannity vs Carlson paper: “a one standard deviation increase in
relative viewership of Hannity relative to Tucker Carlson Tonight is
associated with approximately 34 percent more COVID-19 cases on
March 14 and approximately 24 percent more COVID-19 deaths on
March 28.”

9



What can we NOT do?

Perhaps even more important is recognizing the limits of our methods

• In terms of isolating exogenous change
• And in terms of reliably estimating effects of fairly small magnitude

We do not want to approach this atheoretically! Given your substantive
knowledge, the estimated effect should pass the “smell test”

• John Stewart paper in Electoral Studies: the claim that John Stewart
leaving The Daily Show increased county-level vote for Trump by 1.1%
just does not sound right! (paper was retracted due to a coding error)

• Hannity vs Carlson paper: “a one standard deviation increase in
relative viewership of Hannity relative to Tucker Carlson Tonight is
associated with approximately 34 percent more COVID-19 cases on
March 14 and approximately 24 percent more COVID-19 deaths on
March 28.”

9



What can we NOT do?

Perhaps even more important is recognizing the limits of our methods

• In terms of isolating exogenous change
• And in terms of reliably estimating effects of fairly small magnitude

We do not want to approach this atheoretically! Given your substantive
knowledge, the estimated effect should pass the “smell test”

• John Stewart paper in Electoral Studies: the claim that John Stewart
leaving The Daily Show increased county-level vote for Trump by 1.1%
just does not sound right! (paper was retracted due to a coding error)

• Hannity vs Carlson paper: “a one standard deviation increase in
relative viewership of Hannity relative to Tucker Carlson Tonight is
associated with approximately 34 percent more COVID-19 cases on
March 14 and approximately 24 percent more COVID-19 deaths on
March 28.”

9



Notation and terminology



Three conceptual levels

We have to differentiate three terms:

Estimand
An unknown value that describes a population relationship. It’s the
value that we want to estimate. We’ll call this 𝜃.

↓
Estimator
A rule to produce a numerical value that represents the estimand.

↓
Estimate
The numerical value taken on by an estimator for a particular sample of
data.
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Three conceptual levels

Some things to keep in mind:

1. Estimators produce estimates.

2. Under repeated sampling, estimators produce many estimates.

3. Estimates are a random variable, i.e. they have a stochastic/random
component.

4. Under repeated sampling, estimates have a distribution, which we
call a sampling distribution.

5. Estimators have different properties.
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Potential outcomes framework



Potential outcomes

For each unit 𝑖, we imagine two states of the world: under treatment and
under control

Realized outcome

𝑌𝑖(𝑑) = {𝑌𝑖(1), Potential outcome for unit 𝑖 under treatment
𝑌𝑖(0), Potential outcome for unit 𝑖 under control

(2)

If my treatment is going to the hospital:

• 𝑌𝑖(1) is the value that outcome Y would take if unit 𝑖 went to the
hospital

• 𝑌𝑖(0) is the value that outcome Y would take if unit 𝑖 did not go to
the hospital
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Estimand: Individual-level treatment effect

We then define the individual-level treatment effect as the difference in
potential outcomes for unit 𝑖 between treatment and control:

𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0)

Will I ever observe this quantity? NO! That’s the fundamental problem of
causal inference

• And why we need to learn all of this complicated stuff in the first
place…

13
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Fundamental problem of causal inference:

Only one of the potential outcomes is realized:

𝑌𝑖 = 𝐷𝑖𝑌𝑖(1) + (1 − 𝐷𝑖)𝑌𝑖(0) = {𝑌𝑖(1), if 𝐷𝑖 = 1
𝑌𝑖(0), if 𝐷𝑖 = 0

(3)

FPCI: this parameter 𝜏𝑖 can never be observed!

• Unit 𝑖 is either treated or it is not treated
• I observe either 𝑌𝑖(1) OR 𝑌𝑖(0), but never both
• Causal inference as a problem of missing data
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Ideal data

Without the fundamental problem of causal inference, this is what our
data would look like:

𝐷𝑖 𝑌𝑖(1) 𝑌𝑖(0) 𝑌𝑖

1 2 1 ?
1 3 3 ?
0 5 4 ?
1 3 1 ?
0 2 4 ?
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I can compute 𝜏𝑖 since for each unit 𝑖, I have access to both potential
outcomes
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Real data

With the fundamental problem of causal inference, we only see one
realized outcome 𝑌𝑖 for each unit 𝑖:

𝐷𝑖 𝑌𝑖(1) 𝑌𝑖(0) 𝑌𝑖 𝜏𝑖

1 2 ? 2 ?
1 3 ? 3 ?
0 ? 4 4 ?
1 3 ? 3 ?
0 ? 4 4 ?

As a result, we cannot observe 𝜏𝑖

• And it is unidentified unless we make strong assumptions
• Namely: 𝜏𝑖 = 𝜏 ∀𝑖
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Other estimands

We will never observe 𝜏𝑖 and can (in practice) never plausibly claim to be
able to identify it

• So we will have to focus on other quantities of interest

Average treatment effect (ATE)
𝜏 = 𝔼[𝜏𝑖] = 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝔼[𝑌𝑖(1)] − 𝔼[𝑌𝑖(0)]
We can further disaggregate the above into Population ATE (PATE) and
Sample ATE (SATE)

Conditional Average treatment effect (CATE)
𝜏(𝑥) = 𝔼[𝜏𝑖|𝑋𝑖 = 𝑥]
ATE for some subpopulation of interest (heterogenous effects)

But, again, we cannot actually compute 𝔼[𝜏𝑖] because we never observe 𝜏𝑖
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Inference

This is where causal inference comes in

• We have “missing data” that prevents us from observing 𝜏𝑖, and
therefore 𝜏

• We have to use the observed (incomplete) data to infer the estimand

21



Inference

This is where causal inference comes in

• We have “missing data” that prevents us from observing 𝜏𝑖, and
therefore 𝜏

• We have to use the observed (incomplete) data to infer the estimand

21



Inference

This is where causal inference comes in

• We have “missing data” that prevents us from observing 𝜏𝑖, and
therefore 𝜏

• We have to use the observed (incomplete) data to infer the estimand

21



The role of randomization



Why do we need randomization?

MHE: randomization solves the selection problem

In practice, what does that mean?

• What is the selection problem?
• How would we state the role of randomization in mathematical
notation?

{𝑌𝑖(1), 𝑌𝑖(0)} ⟂ 𝐷𝑖

𝔼[𝑌𝑖(0)|𝐷𝑖 = 1] = 𝔼[𝑌𝑖(0)|𝐷𝑖 = 0]
Is this something we can empirically test?
No: I still can’t observe the potential outcomes.
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Balance checks in R

We’ll use Dunning and Nilekani (2013), who investigate the effect of ethnic
quotas on redistribution in India. The unit of analysis is the village council.

dunning <- read_dta("data/dunning_bal.dta")

Our pre-treatment (emphasis important!) covariates are:

• P_ILL: Mean number of illiterates
• MARGWORK_P : Mean number of marginal workers
• No_HH: Number of households
• MAIN_AL_P : Mean agricultural laborers
• MAIN_CL_P : Mean cultivators
• NON_WORK_F : Mean female nonworkers

We want to show the control and treatment groups are not systematically
different. There are many ways of going about this! Ideas?
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